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NACA ACR No. L4121 CONF1-DENTIAL

NATIONAL ADVISORY C0_MZTTEE FOR AERONAUTICS

ADVANCE CONFIDENTI&L REPORT

EFFECT OF A TRAILII:G:EDGE EXTENSION ON THE

CHARACTERISTICS OF A PROPELLER SECTIO}, _

By Theodore Theodorsen and George W. Stickle

STWi4ARY

A convenient technical method is presented to

evaluate c_an_<es zn the airfoil characteristics ros_It_mg
from am _xteusicn of the chord st the trailing edge of a

.,._l_,:._.,!e:,:' bladG soot'-on. The metho_ determines the

change in the angic of zero lift, the ideal angle of

attack, and the difference in these angles (upon which

the design lift coefficient depends) as a f_nctlom of the

angle a__d length of 2he trai!in_--edge extension. The
treatment is _'-_=:d directly upon _he thin-airfoil theory

and _s l,hus conc_rned only w_.th the mean ca_foer llne of

the s._..:_i_ion,_:amp]es and d._tail_d computations are

giver, <;o illust_ats th_ application of the method. The

methcd is anplicable to all prop_iler sections and Js

shor_ er:ough to permit use in practical design.

INTR0 DUCT I0N

A feat sheet of metal is sometimes attached to the

trailing e¢!ge of a propeller blade in order to increase

the propeller solidity for a given blade design. The
addition of the flat sheet on the trailing edge of the

propeller blade changes the characteristics of the blade

section. The new characteristics are dependent upon

the angle of the extension_ the length of the extensicn_

and the original airfoil section. The problem of
determining the angle at which the sheet should be added

and the effect of this angle on the angle of zero., lift,the

ideal angle of attack, and the design lift coefficient
is the subject of this paper.

The ideal angle of attack is defined as the angle

at which the front stagnation point is at the leading

edge of the airfoil. The c_esign lift coefficient is

C ON m IDENT IA..L



2 CONFYDE!'TTL_L NACAACR No. IJ$121

defined as the lift coeff-clent of the airfoil when set
a_ i:he i.ue_l angle _ attack. If the design lift coeffi-
cient, so defined, corresponds to the operating condition
of tLe propeller section, the airfoil section has a
cs_.iber bhat gives it the highest critical speed (best
press_Jre d_s_cribution) obtainable for the operatinz
condition wlt]_ the camber and thickness distribution
which de:_'._ne the airfoil.

A relative change in the angl_s of zero 7'ft of the
airfoil soctlons along the prope!!_r radius in effect
changes the p'tch distrib1_tlon of the propeller. The
angle of the trailing-elge extension thus permits some
selection of the pitch distribution of the propeller.
This report shows how this effect may be evaluated.

The method of t)_is report is based on the concert
of the examzn_tlon of the mean camber line from thin-

airfoil theory of refer3nce I. The method has been
checked for accuracy wi_h the more complete but more

diff._cult methods of references 2 and 3 and fonnd to

be tn good agreement for thin sections as used on

propei!,_r blades.

Experiment_l data on airfoil section lift coeffi-

cients as a function of angle of attack are ge_eral].y

used in analyzing oropeller operation. Since experi-

mental data for airfoil sections with extended flaps

are not available, bheoretica! calculations must be

used in analyzing propeller operation with trailing-

edge extension flaps. Experimental and theoretical
values of life coefficient as a function ..z angle of

o_repattack r-arely are in _erfect agreement _h.e d! ....

ancy increases with airfoil section camber and thickness
and makes _t difficult to comoare results when _h,_o-

ret_c_<l and experimental values are used together. For
this reason the £ifference in the airfoil characberlstics

bet_:_een the or!_nal anti the extended ..... a_.._oll sections

tm_ application of the results of tbls reportare used in .....

to pPope!].er analysls.

Calculation of the ._m.gle of zero lift, the ideal

angle of attack, and the design lift coeff'iclent is
based on the examf_tion of the mean camber line of the

C 0__ IDE_TTIAL
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a_rfoil section. The method is adapted from reference I,

v_hich gives a discussion of its theoretical backgrotmd

and validity. The present paper applies the solution
to the particular problem of extended flaps on airfoil

sections and presents tho method in a form that makers

it easily applicable to this specific problem. The

steps _n the procedure are as follows:

(1) Obtain the ordinate 7 at an abscis3a x of the

camber line of _he airfoil from a line joJning the ends

of the caulker line.

(2) Calculate the function P from

Y
p - _ ..... (I)

_/x(l - x)

(_) Calculate ¢ for the nose of the airfoil:

! [0. ')125 p

dx - _ Jo x _x (2)

The first term of equation (2) is integrated graphically.

The second term, which may be denoted as Ac N or

i #o.ol25p
AcN _ x dx

#0

i Z °"o125 yrr x_/x(?_ - x)
d× (3)

may be evaluated, however, if the term I - x is taken
equal to unity. This substitution causes an error of

only 0.6 of 1 percent in the Ac N term or approximately

0.2 of 1 percen_ in CN" Then,

l f00"O125
= _ __X_Ydx

a_N _ x5/2

C ONF IDENT IAL
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4 CONPIDE_TIAL NACA ACR No. L_I21

An approximate eq_ation for the part of the camber
line from x = 0 to x = 0.0125 may be written in th_ form
of

y = cx - bx 2

where c is the slope of the camber lime at x = O,
and b is a constant that will make the ordinate at

x = 0.0].25 equal to one y ordinate of the camber
line. (See fig. i.)

it may be shown that the integral of equation (I_)
is equal to

where xI an@ Yl arc the va!uos of x and y at the

common limit of the graFhica! and analytical integrations.

The value of x at which the graphical _ntegration is

stcppod and the anslytlcal begun may be an_vhero in the

region of x = 0.0]25 . _'_l_enextonsion flaps are add3d,

the most convenion_ value is less than x - 0.0125 .

(]-) Ca!co!ate ¢ for the ta_l of the section _n

the same manner as eN is calculated by reo!acing

x by i - x:

_ I _0.9875

_T - r-7J0 I _01 P
P dx +- dx

i -x w i -x
.9875

(6)

(5) The angle of zero lift in degrees is given by

= -57.3cT (7)
0

by

(6) T_ne ideal angle of attack in degrees is given

_I : -20o'6 ((T + _N) (3)

(7) The difference between a_o and _I is the

angle upon which the design lift coefficient depends.

If the slope of the lift curve a is k_:own for the

section_ the design lift coefficient may be calculated by

CLI : a( aI - a_o)

C ONF IDET;[TIAL
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As was explained in the, Introduction, these com-

putations are r_ost _ccurate for values to be 1_sed in

co_ipari_on of th_ origznal _nd the extended airfoil
sections. If used in this manner, the computations

give a_ accurate .oict_re of the cb.anse_ in the opepat "_zno

conditl_ms of the propel].er sections when any angle or

lengtk cf extension is used.

The method for two represerlt_tive exmuples is given

in the appendix _md computations for four exaz,.plos are

given in tables I to IV. The ex_pies are for an
NICA I6--serios airfoil section and a Clark Y airfoil SGO-

tzon. The N;¢A 16-s_ries section has a design lift coef-

ficient of 0. 5 and, since ou]._, th_ m_an cambc, r line is

enployed in the oa!cu!ations, is. desisnated i6-5"C(, which

applies to an aiz'foil of zero or an_, oth.Gr bhickness.

R';,[!DLTS A!ID Disc_L%SION

CoJ_putatieus hsw_ Le.en made for an Y:lCi 16-5.NX air-

foil sectJ, m:_ with am e;:tenslon o_ 20 p_._eent o., _n_ chord.

The rcsvits are given in figure 2 as a funzbion of the

angle of e.::tersio_ measuz.ed f'Pom a st_-mi&hb line joining
the en..,k_ of il_e :_ecn c_.u,:ber!J.ns of the erisinat aJrfoi].,

_ttac:.:,The ang].e of zero lift, the _ _ and,d._a£ anglo of .... '
the differei, le.e bet}_een the two ansi.as of th@ original
azrfo:i.1 are shown in zz_ure 2. _ The ansle of extension

would have to be _.7 ° to ......... e; _a,._u th_ _mol, of zero lift
equal to t]zat of the original aiz_.foil, ].5.2 ° to keep

the idoai _g]_e ,of attack unchanged, and _o to make

the diff'srence b:_l;v:een _he two ang].cs the s_ue, which
would ].,_.ean equal d_:,sign lift coefficients for the

_It is-inherent in the method that these calculated

angles are _uessu:_ed from a straight line joining the
extremities of the mean c_ber l_ne of the extended air-

foil section. If it is desired to refer th,_se m_sl_.s to

the ca_nber line of the original a_rroil section, the

followins fopmu!a £ives the ansu!ar difference _l

between the two reference lines:

'_on n _ngt!_- -..... sin (:_.sle of extension)

tan_l_ I _ Chord
...._tensj_!o_ l_njb

I + _ Chor'd _'_/ cos (Angle of extension)

C0 "._2SOKD:,"_'_'7...tL
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orlgin_l s_nd extended _irfoils. If the angle of

extension is msdc 13,.2 ° so that the ideel _ngle of

vttDc_ remains unchanged, breska_sy of the flow st low

lift coefficients might be encountered.

Figure 3 gives the results for a 20-percent extension

on _ Cler!_ Y airfoil of 1.83-percent camber, which corre-
sponds to s stendsrd Clark Y section of 6-percent

thic½uess. The angle of t!_e extension that gives

characteristics equivalent to the original _irfoil is

seen to be gre_t!y reduced over thet of figure 2 beceuse
of the smsl! emovmt of camber for the originel 8irfoi!.

The results pre shown Jn figure 4 for s 20-percent

extension on _ Clark Y airfoil of 5._9-percent cember,

which corresponds to a standard Clark Y section of

approximately 18-percent thickness or to a double
cembered C!srk Y section of thinmer section with _

design lift coefficient between 0.6 _nd 0.7. These

results were ca!culsted to _nvestigste the effect of
cember _lone.

The results for v 40-percent extension on a

Clark Y sirfoi! of 5.2_9-percen_ camber are presented

in figure 5, The vG_gle of the extension to maintain

the same design lift coefficient _s the basic airfoil

is approximetely the same for both the 20- end the

40-percent extensions.

Figure 6 shows a comprrison of the _Z and the
o

Cl - a_ o curves for the four conditions investigated.

It may be observed thet the slopes of the a_ curves
o

ere _II approximste!y equ_l eta v_iue of 0.35 ° per

degree of the angle of the extension. The reason for

this condition can be seen from examination of equc-

tions (6) end (7) along with figures 7 _nd 8. The value

of a_o is defined by (T, and from figure 8 it ten

be seen that the trailing edge of the airfoil is the

dominating factor in determining (T" The a I - _
o

ctu,ves are seen to vary more in slope th_n the a_
o

curw s. C_mber of the or_gin_l airfoil section merely
shifts the vs!ue of a, fo_' a given extension _ngle.

o O

CONFIDENTIAL
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The length of the extension hss the seme effect ss
csmbero The longer the extension the less c_mber the
exte_ded a!rfoil hss for e given angle.

CONCLUSIONS

,_Aconvenient techn!cel method h_s been presented

to ev_luaLe changes in the _irfeil chsr_cteristics

resu!tJng from _,m extension of the chord _t the trail3ng

edge of a propeller blade section. The method determines

the chsnge in the _mgle of zero lift, the ide_l angle of
_tt_ck, s1_@ the difference In these angles (upon which

the design lift coefficient depends) ss a function of

the cngle _nd length of the tr_iling edge cxtenslon _'nd

permits the edjustment of the angle of the extension of

the chord to comply wJ th _ny requirements regsrding the

_ngle of zero lift or the design lift coefficient.

It _s found the t for the ceses considered the

ch_rscter/stics obtained by thls short method were
ectu_liy 5n perfect _,greement with d_ta cclcul_ted by

the expect method of the arbitrary airfoil theory.

This sgreement is, of course, not necessarily true
for thi_k sections cr extreme c_ses of cuz_vature ne_:r

the e_;t_'emlties of the chord. On the other hsnd, for

normsl ce=;es the method Is sufficiently accurate fol_

ell tech_lical purposes.

L_ngley Memorial A ei_onauticel Labor_tory
Nation el Advisory Co_mlttee for Aeronautics

Langley Field, Va.
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APPENDIX

C0_,{P_rATIONS iN DETAIl,

Tables I and II contain the detailed computations

for an }TACA 16-5XX airfoil section for the original air-
foil and for the airfoil extended 20 percent. Tables Ill
and IV '-_complain the detailed computations for a standard

6-perccnt-_zhick Clark Y airfoil with and without an

extendGd traliing edge of 20 percent. Table V gives the
camber o_dinstes for NACA 16-series airfoil sections

and table Vl, the camber ordinates for Clark Y sections.

Each ste D in obtaining the results for the
NACA 16-5XX sec_±o_, without traiiing-edge e,_t_ns_om is

explained in detail for table I. The steps that are

different because the airfoil is extended are explained
for table I!.

Example ! - Characteristics of NACA !6-5Y_X Airfoil

T_ue nttmbers in parentheses refer to column mmfoers
in t___e I.

(!) By use of table V, select values of x to be
used.

(2) Subtract values of x from unity.

(5)  m!tipl  (1) (a).

(]_) Take square root of (3).

(5) Obtain ordinate of mean camber line from

table V by multiplying values in table V by

the design lift coefficient of 0. 5 and convert

to fractions instead of percent.

($) (5) by (4).

(7) Oivlde (6) (1).

o Plot (7) against (I) between the values of

x = 0.0125 and x = 0.95 and extend the
curve to x = 1.O as shown in figur_ 7.

C ONFID _NT I&L
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9- Integrate with a p!animeter between the limits
cf x = 0.0_25 and x = 1.0.

i0. Calct_late A( N from equation (5):

A( N -
V-x--I +- (°Xl-yl3IY

who n

x I = 0. 0125

Yl = 0. 00268

c = 0.62254 x 0.5 = 0.31117

then

2 (0.00268 + 0.O00o°!)
A(N - 0.!ii8-_

= o.o199

I!. Calculate (N fro_il eqult!on (2) and the results

Of SI_@pS 9 and 10:

Or

cN - D! P dx - A
i

Jo. o125

q_ _ _o.1_i_S_!_ o. o199
• 17

= -0.0789

2 r_. v_. ol_.ce the NACA 16--5XX airfoil has a symmetrical

camber line,

CN : "{T

13. From equation (7) calculate angle of zero llft

_o = "57.3(T

= -57 3(o. .07o9) •

: -4.52 °

14. From equation (8) calculate t!_e ideal angle of

attack _I:

_I = -28"6(¢T + CN)

: 0o

C ONF IDENT IAL
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15. Calculate the difference aT" _$o:

= 0 + 4.52_I- C_o
: 4.520

Example !l - Characteristics of NACA 16-5XX A_rfoil

with 20-Percent Extonsion

Calculations are presented for the characteristics

of the NACA Io-5XX airfoil with a 20-percent extension

set at an _'_gle of 7.38 ° to the line joining the ends

of the moan camber line. This anglo is equal to the

angle formed by a straight line drawn through the y
ordinate at 90 percent of the chord and the end of the
mean camber line.

The m_bers in parentheses refer to colttmn numbers
in tab7_e II.

(i) Select values of x2 (abcissa of airfoil with
extended additions).

(2) Obtain values of yp from table I (ordinate
of airfoil with e_tended additions).

(3) Compute Ay from

x2

iy : -Y2T 1.2

where Y2T is the ordinate

(___)Add (2) and (3).

Y2 at x 2 = 1.2,

(5) Convert ()$) to unit chord by dividing by 1.2.

(6) Convert (I) to unit chord by dividing by 1.2.

7- Add a station at x = 0.9875. The y ordinate

is obtained by proportion since the extension

is a straight line.

8. %%q%en the coordinates of the mean camber line

are obtained from the base of a straight line

Joining the ends of the mean camber line of

the extended airfoil, the example proceeds

in the same manner as example I until (N is
obtained.

C ONF IDENT IAL
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TABLE I.- CALCL_ATIONS FOR }TACA 16-SXX AIRFOIL

(1)

X

0

.o125

.05

.lO

.20

.30

.40

.50

.60

.7o

.80

.90

.95

-t. O0

(2)

1 - x

i - (I)

r .

I .00

.9875

.95

.90

•80

.70

.60

.50

.40

.30

.20

.!O

•05

0 0

%N=- -0. 0789
=" _-,o789

(3) (4)

0 0

o123

o475

•o9oo

.igoo

•2100

.24oo

•25oo

•24oo

.2100

•1600

•o9oo

.o475

0

_ o

•zzo9

.2179

.30o0

.4ooo

•4583

.4899

.5ooo

.4899

.4583

._ooo

.3ooo

•2179

(5)

U
0

.002"

.0079

.o129

.o199

•0243

.o268

.0276

.o268

.0243

.0199

.0129

.o079

(6)

p.I.

Y

#x(i - x

_(5)/(_L)

o.o_2

•o363

.o431

•0498

.o53o

•o547

.o552

.o547

.o53o

•o498

• o43 i

.o363

= -4.5z_

(_I = O°

_7),_

(g)/(z)

i.936

•726

.431

.249

•177

.137

.ii0

.o91

•o76

.o62

.o4S

' 038 i

= 4.52°
_I " ago

NATIONAL ADVISORY

CONL[ITTEE FOR AERONAUTICS
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TABLE llI.- CALCULATIONS FOR CLARK Y AIRFOIL '_ITH 1.83-PERCE*_T CAMBER

CORRESP0,WDI[_G TO STA/_DARD 6-PERCENT THICK CLARK Y AIRFOIL

(1) (2) C3) C4) (5) C6) (7) (8)
L"-
Or_
4)

.0125

.O5

.lO

,20

.30

.40

.50

.60

.70

.80

.90

.95

•9875

i. O0

1 -- X

i- (1)

l.OO

.9875

.95

.90

•80

.70

.60

.50

.40

•30

•20

.i0

.05

•0125

0

x(l - x)

C1) x (2)

V_ql - x)
P l

(5)/(4)

0

•0123

•0475

.0900

•1600

•2100

•2400

•25OO

.2400

• 2100

•1600

•O9 O0

.0475

•0123

0

v_7

0

•1109

.2179

•3000

.4000

•4583

.4899

•5000

•4899

•4583

•4000

•3000

•2179

•ll09

0

0

.0015

,0056

.0096

.01_8

.0174

.0183

.0178

•0161

.0132

•0096

•0051

•0026

.0o07

0

0.0135

.0257

.0_20

•0370

•0380

•0374

•0356

•0329

.0288

.0240

•0170

.Oll9

.OO63

Plx

(6)I(1)

1. 080

.514

•520

•185

•127

•094

•071

.055

.041

•030

•019

•013

.OO6

8%o = -1.82 ° al ,, 2._9 o
a I ., 0.47 ° - 8%o

__/__
I - X

C6)/(2)

0.014

•027

•056

.046

.054

•062

•071

•082

.096

•120

•170

•258

.504

NAT IOI_AL ADVISORY
COMMITTEE FOR AERONAUTICS
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NACA ACR No. L_I21 CONFIDENTIAL 16

TABLE V.- CA_BER-L!NE ORDINATES FOR

THE 16-SERIES AIRFOIL SECTIONS

I_ll Values measured in Dercent chord from chord !_ne;
lift coefficient, 1,0]

Sbat!on

0

1.25

2.5

5

7.5

i0

!5

2o

25

3o

%o

5o

6o

7o

8o

9o

95

I00

Ordinate

0

.535

.93o

1.58o

2.120

2.587

3.36.4

3.982

 .475

4.861

5.356

5.516

5.35o"

4.86z

3.982

2.587

i .58o

0

Slope

O.62234

.34771

.29155

.23432

.19993

.17486

.138o4

.ii052

.oS743

•06743

.0322?

o

.03227

.06743

•11032

•17486

.23432

.62234

N&T IONAL ADVISORY

C0_,2vIITTEE FOR AERONAUTICS

C 0_F !_)EITTYAL





NACA ACR No. IJ_121 CONFIDERTIAL

TABLE VI.- MEAN-CAZBERAND THICKINESSORDINATESFOR

]_'A}_LY Of. n±_±_Tn1:V)T_'O,._J__, BASED UPON CLMd{ Y SECTION

_,_ll values are given in p,_rcent of w_ng chord]

0

!.25

2.5

5

7.5

l0

15

ao

3o

4o

5o

6o

7o

0

8O

9o

95

I00

• o822

.]597

z 0/4.0*..2

.4_£9

.5185

._-812

.8062

.94_7

1. 0000

.9752

.8778

.7223

.52o7

.2785

.iL435

0

0

.15o4

.2150

.2979

.35L3

.3925

.45o4

.4842

.5ooo

.4872

!.4496

.39Lo

•3141

.2231

.I197

.o637

0

17

I,.E. radius: 0.009t 2_. T.E. radius: 0.005t.

NATIONAL ADVISORY

C OI_,CQITTEE FOR AERONAUT IC S

CONF IDENT Yi&L





NACA ACR No. L4121 Fig. 1
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NACA ACR No. L4121 Figs. 2,3
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NACA ACR No. L4121 Pig. 6
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NACA ACR No. L4121 Figs• 7,8
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